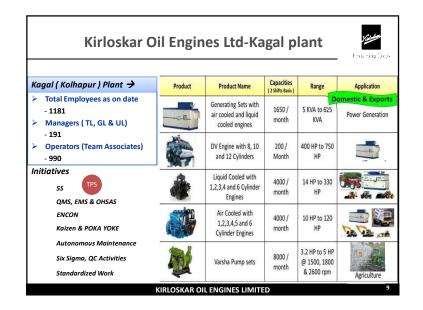
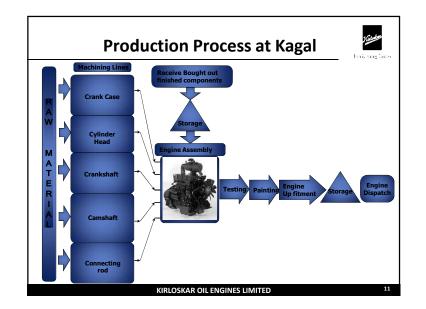
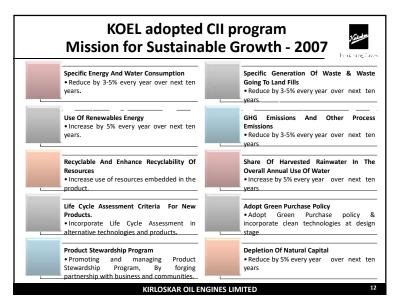


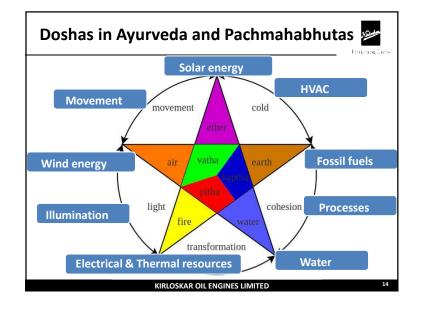
About Kirloskar Oil Engines Ltd

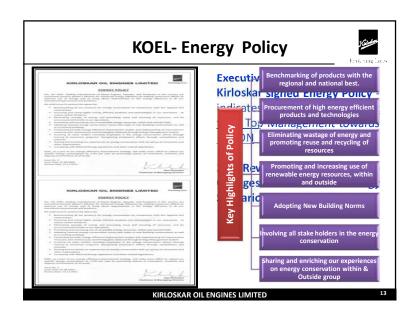


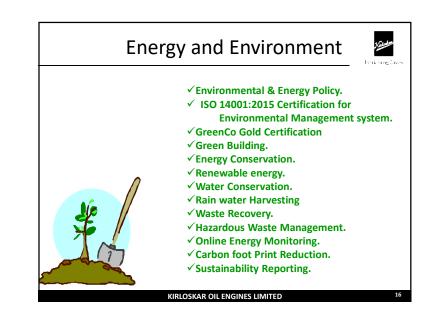
Incorporated in 1946 as a part of the Kirloskar Group of Companies, KOEL is an engineering conglomerate, founded by the late Mr. Laxmanrao Kirloskar. KOEL is involved in the manufacture of internal combustion engines, generating sets and parts, which are used for various applications, such as agriculture, industrial, stationery power plants and construction equipment, among others.

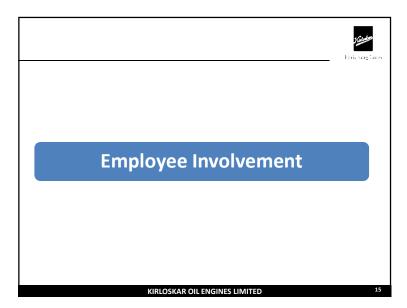

Manufacturing locations and field offices

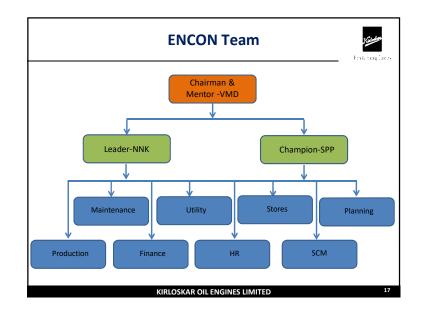

LOCATION	BUSINESS GROUPS	ACTIVITY
Pune	All business groups	Corporate functions, marketing and R&E
Kagal	 Agri Industrial PGBG Export 	 Engines and Gensets manufacturing Spares warehouse Manufacturing of farm mechanisation equipments
	KIRLOSKAR OII	L ENGINES LIMITED 7

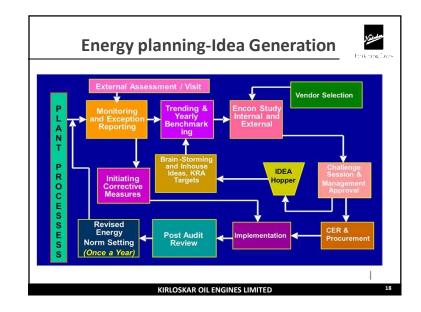

	About Kirloska		Journe Laws
	fices contd.		
LOCATION	BUSINESS GROUPS	ACTIVITY	
Rajkot	AgriExport	 Engines (Agri) manufacturing Spares warehouse 	
Nashik	LEBG	 Large Engines and Gensets manufacturing Spares warehouse 	
FIELD	CATER TO BUSINESS GROUPS	LOCATIONS	
Regional and area offices	All business groups	State Capitals in India	
Overseas Offices		Kenya, Nigeria, South Africa, Dubai, Indonesia	
	KIRLOSKAR O	IL ENGINES LIMITED	8

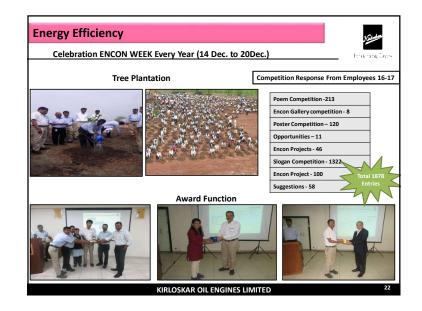




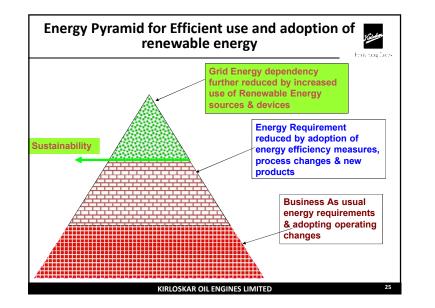


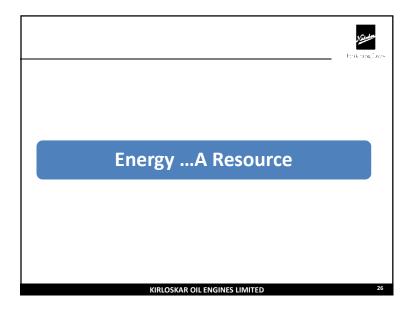


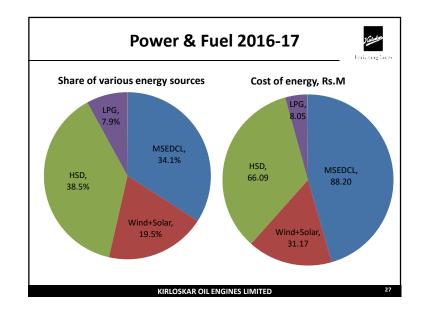


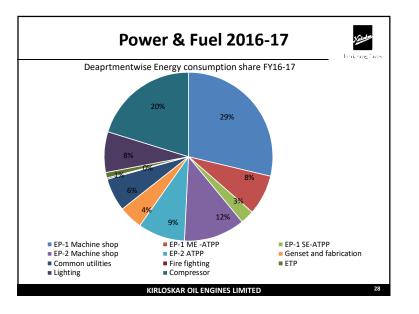


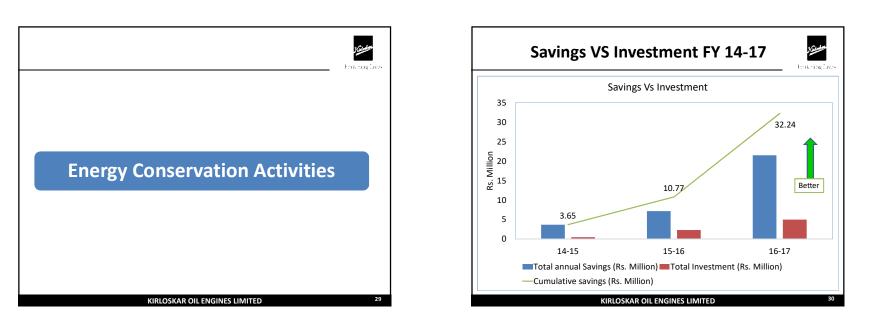
Employee Involvement & ENCON Capacity Building Programs						
SN	Training Program	Faculty	Date of Training	Duratio n (Hr.)	No of particip ants	Training Man- hrs.
1	CII- 14 th National Energy Conservation Award Hyderabad	CII Hyderabad	19 th & 20 th August 14	16	5	80
2	MEDA 9 th State Level Award	MEDA Pune	20 th January 14	4	5	20
3	ISO 50001 Lead Auditor Course	BSI Pune	7 th April to 11 th April 14	45	2	90
4	IEX Power Trading	MCCIA	9 th May 13	3	5	15
5	Parivartan Sustainability Award	Sustainability Outlook New Delhi	17 th October 13`	9	2	18
6	GreenCo Summit, Chennai	CII GreenCo team	26 th & 27 th Jun 14	16	3	48
7	GreenCo Meeting Pune – TATA Motor Visit	CII GreenCo Pune Chapter Team	13 th June 14	4	3	12
	One day workshop	MEDA Kolhapur &				
8	Renewable energy & energy efficiency	Department of Energy , Shivaji University	13 th February 14	6	5	30
		KIRLOSKAR OIL ENGINE	S LIMITED			19

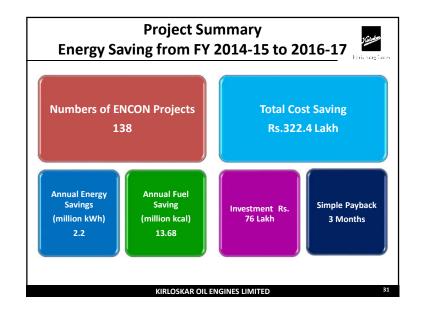

	Employee Involvement & ENCON Capacity Building Programs					
SN	Training Program	Faculty	Date of Training	Duratio n (Hr.)	No of participan ts	Training Man- hrs.
9	EMS & OHSAS Awareness	Mr.Nilesh Upankar	12-Sep'13	3	32	96
10	Six Sigma Green Belt	Mr.Shailendra Rahigude	19-20-Feb '14	8	46	368
11	Six Sigma Green Belt	Mr.Shailendra Rahigude	19-20-Mar' 14	8	70	560
12	Green Building Rating Systems	CII	28-29-Nov' 13	16	2	32
13	EMS Legislation	Mr.Sachin Rahalkar	09-Jul' 13	4	22	88
14	OHS Legislation	Mr.Sachin Rahalkar	10-Jul'13	3	22	66
				man 1897		
		KIRLOSKAR OIL ENG	GINES LIMITED			20

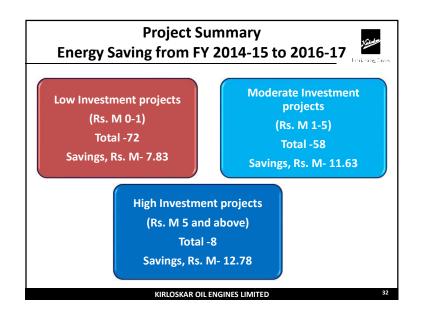












January Laves

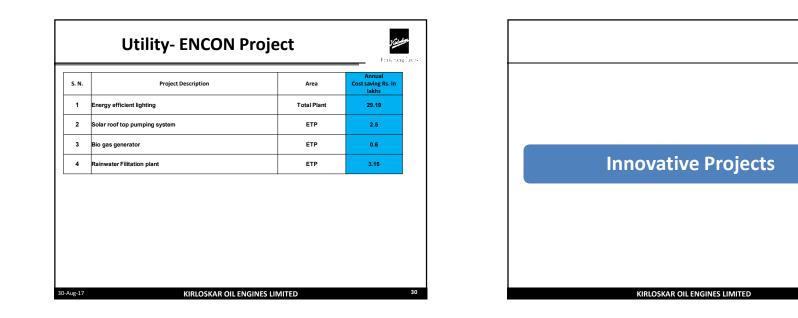
	lenie ang laws	M/C Shop - ENCON Project	heris ereng lave
		Sr. Project Title Line Name	Possible Cos Saving in La
		1 To Provide electrical switch/autosenses near to the core plug pressing station on DV-Cylinder Head Line on OP-80 station DV Cyl. Head Line	. 0.08
		To save electrical power cost by providing separate hydraulic motor ON/OFF system on 2 DP40/50 Pressing machine & also provide only one hydraulic system for two m/c in single piece flow On R830 cylinder head line 6R 6K Cyl. Head Li	ne 1.37
		To save electrical power cost by activating hydraulic motor in power saving mode instead of 3 continuously running in idle condition with in house modification in PLC logic on op-80 WIDMA m/c on 66K Cylinder head line	ne 0.087
List of projects		4 To save electrical power cost by use 250 kg crane against 500 kg at input conveyor (component wt only 8 kg)on SL-90 Cy.head line SL90 Cyl. Head Line	e 0.03
LINL OF DECIN		5 Reduce HA Crankcase line power consumption from 14.59 Units/Cyl. to 13 Units/Cyl. HA Crankcase Lin	6.69
		6 Reduce HA Crankcase line Air(power) consumption cost HA Crankcase Lin	e 0.9
		7 To save electrical power cost on Micromatic (OP 70) m/c Common Camshaft	ine 0.5
		8 To save electrical power cost on Toyoda (OP 80A) M/c Common Camshaft	ine 0.5
		9 To reduce power consumed in tool magazine indexer(OP50/60/80) DV Crankcase Lin	0.86
		10 To use the washing machine coolant at room temperature instead of hot coolant which is heated up to 55 to 60 degree Celsius DV Crankcase Lin	18.12
		11 To reduce power consumed in heaters at OP130 final washing machine DV Crankcase Lin	0.91
		12 To reduce power consumed by hydraulic motor at cam bush pressing machine (OP110) DV Crankcase Lin	9 1.37
		13 To save 50% electrical power cost by Utilize all washing stations by using second chamber & start to wash at time two component in single cycle (op-70) R810 Cyl. Head Lin	e 0.85
ug-17 KIRLOSKAR OIL ENGINES LIMITED	22	30-Aug-17 KIRLOSKAR OIL ENGINES LIMITED	2

Sr. No.	Project Title	Line Name	Possible Cost Saving in Lac
14	To reduce power consumption on rough washing machine on 6R/HA6 Crankshaft line	6R/HA6 Crankshaft Line	0.47
15	To reduce power cost by reducing cycle time of washing machine	DV Cambox Line	0.2
16	To reduce power cost by stopping hydronic unit of Op.40 machine at idle condition	DV Cambox Line	0.47
17	DV CON ROD- Maintain line power consumption below 23kwh per component	DV Conrod Line	3.6
18	To reduce cycle time of Intermediate washing machine OP40 by 8 mins and to eliminate heater	HA6 Crankcase Line	0.39
19	To eliminate heater of continuity test machine OP140	HA6 Crankcase Line	0.43
20	Reduce air consumption On r1040 crankcase line	R1040 Crankcase Line	0.32
21	Air consumption to be reduced when APG not in use	R1040 Crankcase Line	0.67
22	Power Consumption Saving on OP150 A , SL90 Lapping M/c	DV Crankshaft Line	0.052
23	Power Consumption Saving on OP50, Fortuna M/c	6R/HA6 Crankshaft Line	0.039
24	Power Consumption Saving on OP140, Balancing M/c	6R/HA6 Crankshaft Line	0.072

M/C Shop - ENCON Project			
Dura in a trial a			

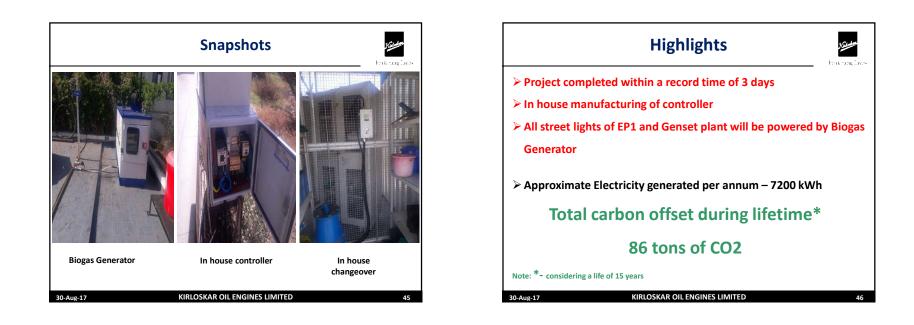
Sr. No.	Project Title Line P		Possible Cost Saving in Lac.
1	To Reduce power cost by disconnecting mist collector on Op-85	HA Cyl. Hed Line	0.48
2	To reduce washing M/C power cost by reducing frequency of component washing	DV Cambox Line	0.68
3	DV CON ROD- Maintain line power consumption below 23kwh per component	DV Conrod Line	3.60
4	Optimize Heating temp. (OP- 80) for Final Washing on Camshaft line	Camshaft Line	0.60
5	ve electrical power cost on Streightening (OP 40), Micromatic (OP 70), Toyoda (OP 80A) Ishing (OP 120) M/cs		1.80
6	To save electrical power cost by eliminating dirty tank coolant transfer	Common Camshaft Line	1.15
7	To save Compressed air cost on Horizontal Induction Hardening (OP 20), Landis (OP 50), Micromatic (OP 70), & Radial Drilling (OP 100) M/cs	Common Camshaft Line	0.08
8	To reduce power consumption of OP100 by keeping machine in power saving mode	HA6 Crankcase Line	1.07
9	To reduce power consumption of OP70 by rearranging tools inside the magazine in their operation sequence	HA6 Crankcase Line	0.08
	Reduce power cost of RCH line by using single power pack for both Valve seat & valve guide pressing on op-80	R1040 Cyl. Head Line	1.50
11	Make separate ON/OFF Switch for Marposs Gauge	Crankshaft Line	0.25
12	Power consumption saving on OP180 , Final Washing m/c	DV Crankshaft Line	0.76
13	Power consumption saving on OP100, TAL M/c	6R/HA6 Crankshaft Line	0.03
14	To Reduce Power consumption of hydraulic motor on OP80 WIDMA machine	6R 6K Cyl. Head Line	0.09
15	To Reduce Power consumption of hydraulic motor on v/s & v/g pressing machine	R810 Cyl. Head Line	1.37
30-Au	g-17 KIRLOSKAR OIL ENGINES LIMITED		25

_

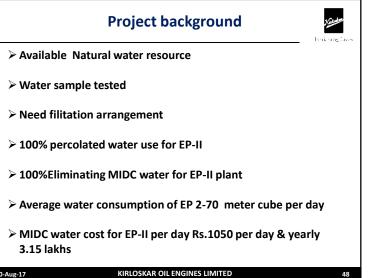

16	To Reduce Power consumption of on OP80 washing machine	R810 Cyl. Head Line	0.85
17	To Reduce Electrical Power consumption on SL90 cylinder head line by changing man- machine work combination with cell wise time study	SL90 Cyl. Head Line	1.64
18	To Reduce Electrical Power consumption on R810 cylinder head line by changing man- machine work combination with cell wise time study	R810 Cyl. Head Line	0.51
19	To optimize compressed air flushing time on primary washing machine & save compressed air cost with ZERO investment	SL90 Cyl. Head Line	0.97
20	To Provide electrical switch/autosenses near to the core plug pressing station on DV-Cylinder Head Line on OP-80 station	DV Cyl. Head Line	0.08
21	To save electrical power cost by use 250 kg crane against 500 kg at input conveyor (component wt. only 8 kg)on SI-90 Cyl.head	SL90 Cyl. Head Line	0.03
22	To run the hydraulic motor for the time period of its actual component clamping time only. For rest of the time the motor should stop running	6R 6K Cyl. Head Line	0.80

Sr. No.	Project Title	Line Name	Possible Cost Saving in Lac.
	Hot cure tank cleaning & DM water changing frequency is changed from once in a month to twice in a month	HA Cyl. Hed Line	0.16
2	To Reduce Power consumption cost by reducing cycle time of OP120	HA Cyl. Hed Line	1.10
3	Optimize Heating temp. (OP- 80) for Final Washing on Camshaft line	Camshaft Line	0.60
4	To reduce power consumption cost from Rs.11.5 per cylinder to below Rs.10 per Cylinder, on R14040 Crankcase line	R1040 Crankcase Line	3.63
5	To save electrical power cost on (OP 130) Gear heating machine	Common Camshaft Line	0.50
6	To eliminate chatter mark problem on cams for FIP camshaft	Common Camshaft Line	0.50
7	To reduce electrical cost by switch off the hitters while machine keep in emergency mode on op-70 (Final washing) R810 cylinder head line	R810 Cyl. Head Line	0.25
8	To reduce the Electrical power cost on OP-40 washing m/c on DV Cylinder head line	DV Cyl. Head Line	0.72
9	To reduce the Op40 Cycle time by optimization of cutting parameters	DV Cambox Line	2.33
		-	
	ENCON (Q3) Cost Savings FY16-17- Rs.	9.79 Lac	

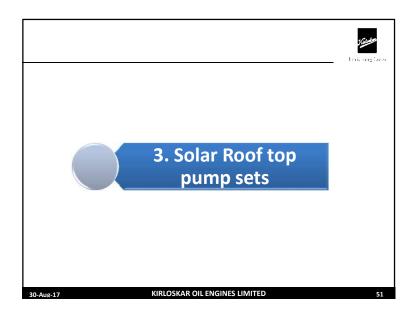
			henis rang la
	Maintenance ENCON Proje	cts	
S. N.	Project Description	Area	Annual Cost saving Rs. In Iakhs
1	Energy Saving through Hydaulic power pack optimization at Toyoda Top center - R1040 Crank case line & Crank shaft line	EP1 M/C Shop	14
2	Power saving of hyd motor when EMG.pressed	EP2 M/C Shop	0.11
3	Power saving of HYD power pack in idle mode machine1	EP2 M/C Shop	0.24
4	Power saving of HYD power pack in idle mode machine2	EP2 M/C Shop	0.26
5	Veturi effect air nozzle fitted for air saving machine1	EP2 M/C Shop	0.5
6	Veturi effect air nozzle fitted for air saving machine2	EP2 M/C Shop	0.7
7	Veturi effect air nozzle fitted for air saving machine3	EP2 M/C Shop	0.1
8	Veturi effect air nozzle fitted for air saving machine4	EP2 M/C Shop	0.6
9	Instead of two hyd motor run all HYD ckt shifted to one power pack .	EP2 M/C Shop	0.67
10	Soft start of washing motor	EP2 M/C Shop	0.2
11	Interface pneumatic foot operated foot switch to flow air to gauging system	EP2 M/C Shop	0.2
12	Instead of two 18 watt CFL bulb , 11 watt LED bulb id fited to reduce power cost .	EP2 M/C Shop	0.05
13	6R Paintbooth water tank level optimisation	Painting	2
	power cost .		

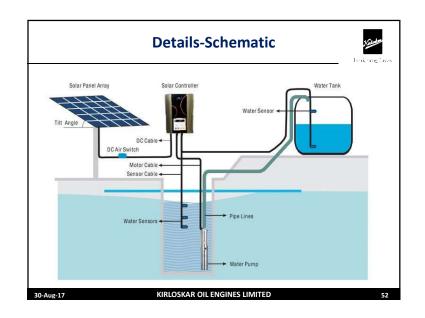

	Maintenance- ENCON P		hmi, rang la
15	LADDER modification on 2974 Doosan m/c for spindle cooler on /off	EP2 M/C Shop	0.2
16	LADDER modification on 2977 Doosan m/c for spindle cooler on /off	EP2 M/C Shop	0.2
17	Instead of two power pack only ne will be used to save the energy on 4r head valve seat press	EP2 M/C Shop	0.86
18	Reduce the power consumption of HYD. MTR when Machine is in ideal condition for more then 10 min at widmam/c 6r head line	EP2 M/C Shop	0.17
19	Energy Saving through Hydaulic power pack optimization at OP-170 at Crankshaft line	EP1 M/C Shop	0.3
20	Reduce power cost of RCH line OP 40 by modification of PLC logic.	EP1 M/C Shop	0.14
21	Reduce power cost of RCH line OP 30 by modification of PLC logic.	EP1 M/C Shop	0.18
22	Energy saving by optimize Hydraulic power on Pressing machine RCH Op80	EP1 M/C Shop	1.4
23	LADDER modification on 2974 Doosan m/c for hydraulic cooler on /off	EP2 M/C Shop	0.06
24	Power saving of hydraulic motor when lever go to normal position	EP2 M/C Shop	1.48

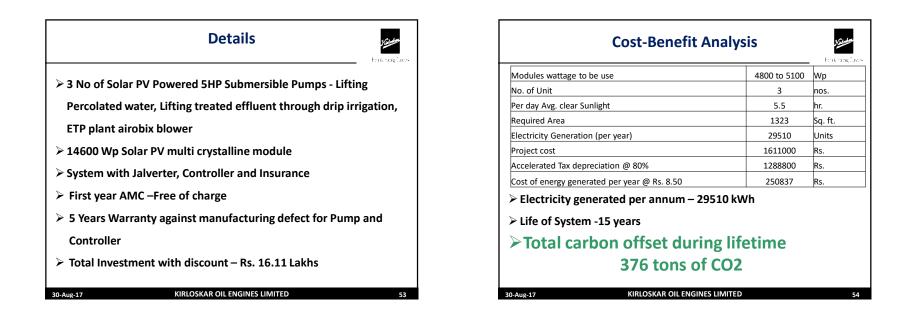
)

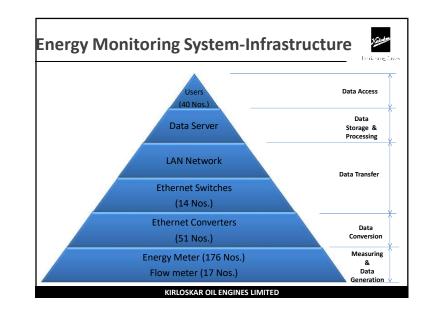


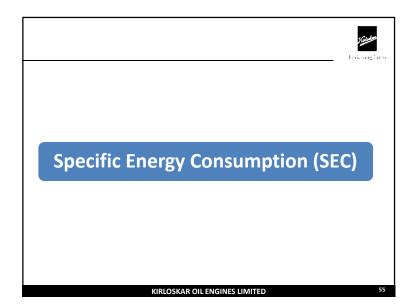
	Biogas generator	heric ang lave
Make- KO	EL	
Rating - 1	5 KVA	
Voltage –	230V	
Current –	62A	
Better Ae	sthetic	
Cost effec	tive controller	
Connecte	d load – EP1 and Genset All Street lights	
30-Aug-17	KIRLOSKAR OIL ENGINES LIMITED	44

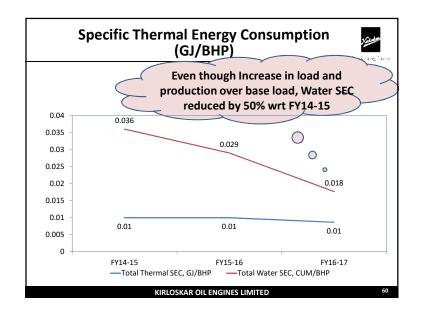


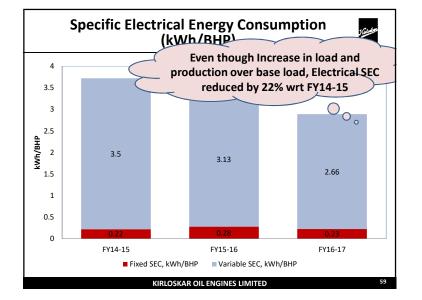






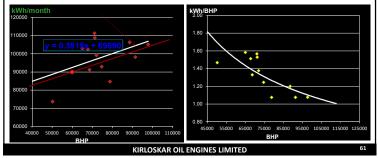


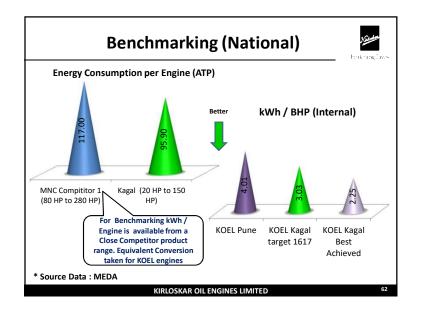


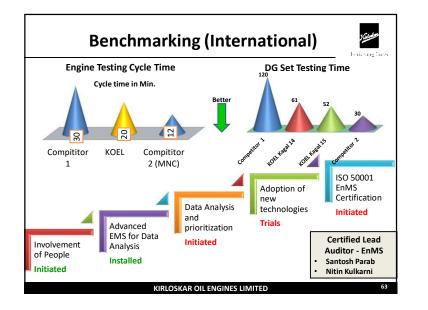


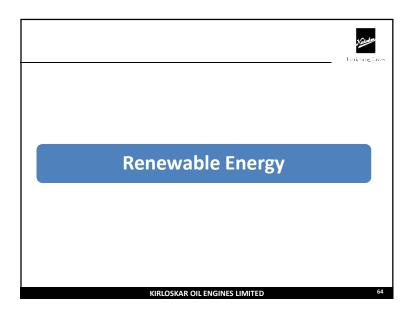
Losses

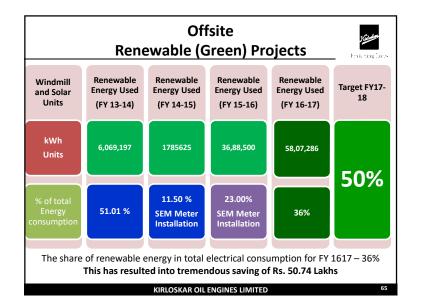
144.

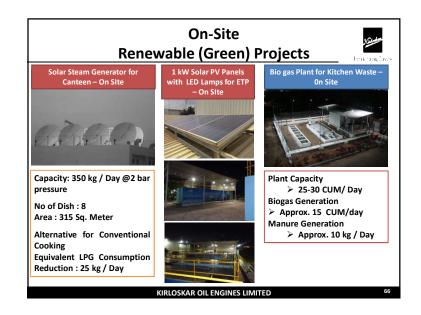


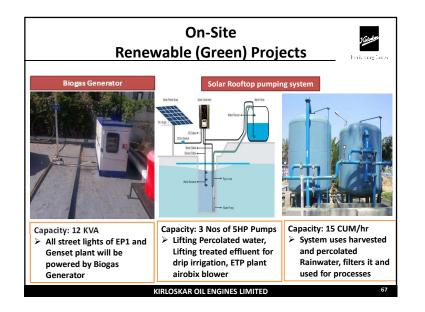


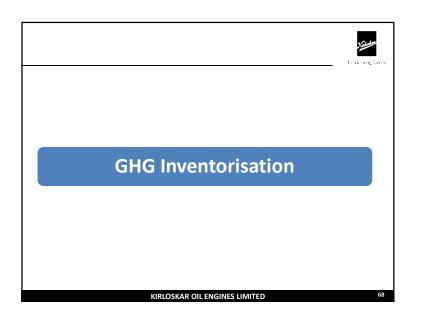


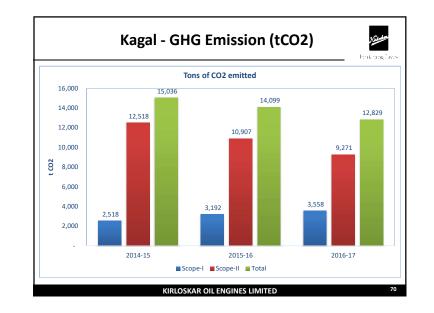


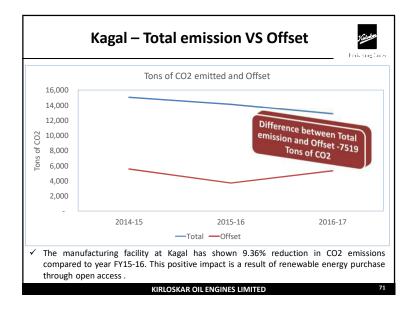

- Help in forecasting, monitoring, targeting energy and other resources planning.
- Decision of continuing or stopping production based on fixed and variable energy consumption can be justified

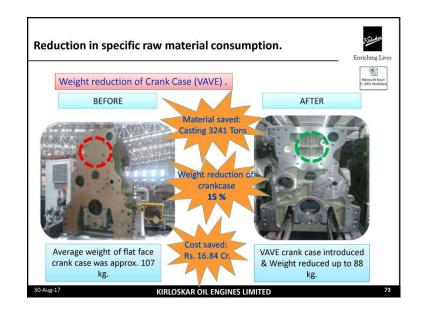


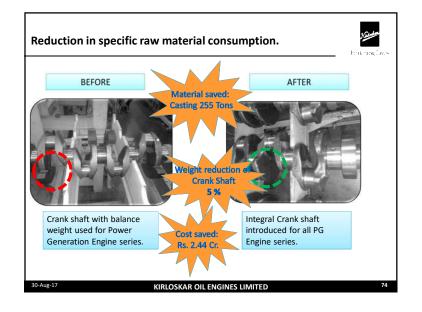




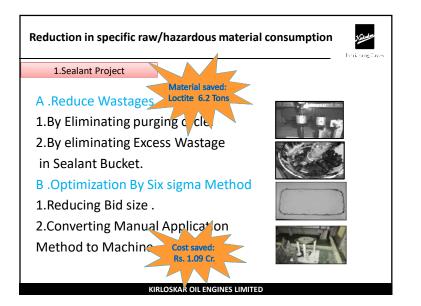


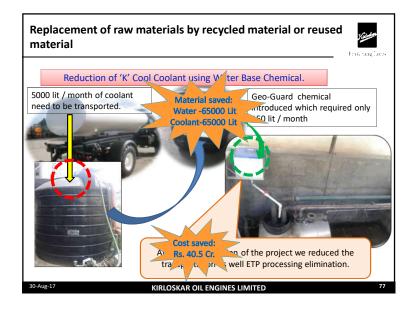


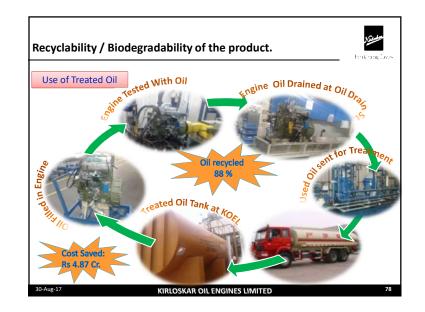


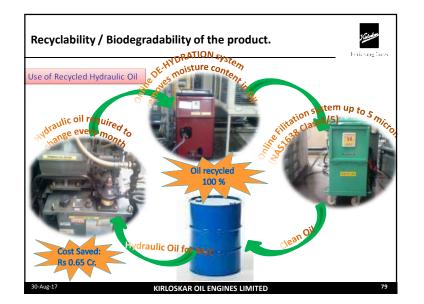


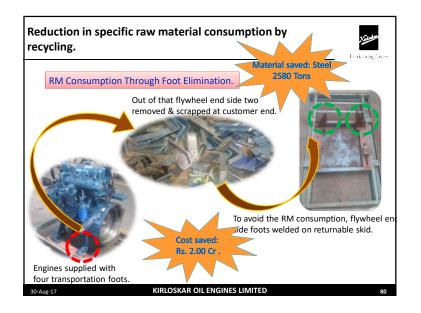
				ant – /				leni	rang lawas	
Sr. No.	Source	Carbo Scope	n Foot Prir Unit	nt Report D	Data - Kaga Consumption	GHG Emission (tco2)				
	Jource	ocope		FY14-15	FY15-16	FY16-17	FY14-15	i		
1	HSD	1	kl	728.00	972.00	1,139.00	1,911.44	2,552.08	2,990.5	
2	LPG	1	kg	175,228.00	184,870.00	162,478.50	525.68	554.61	487.4	
3	FO	1	kl	27.00	28.73	26.77	80.43	85.59	79.70	
4	Compact Natural Gas (CNG)	1	SCM	-	-	-	-	-		
5	CO2 for cutting	1	kg	-	-	-	-	-		
6	CO2 for welding	1	kg	-	-	-	-	-		
7	CO2 in fire extinguisher	1	kg	-	-	-		-		
			Total Scop	e 1 =			2,518	3,192	3,55	
	Scope 2									
1	Electricity Purchased	2	kWh	13,720,094	11,954,222	10,161,709	12,518	10,907	9,27	
			Total Scop	e 2 =			12,518	10,907	9,27:	
	Offset									
1	Electricity Renewable		kWh	1,785,625	3,688,500	5,807,286	1,629	3,365	5,29	
2	Biogas		m3	5,423	5,494	6,327	10	10	12	
3	Solar	1	kg of steam	20,105	28,361	31,906	0.00	0.00	0.0	



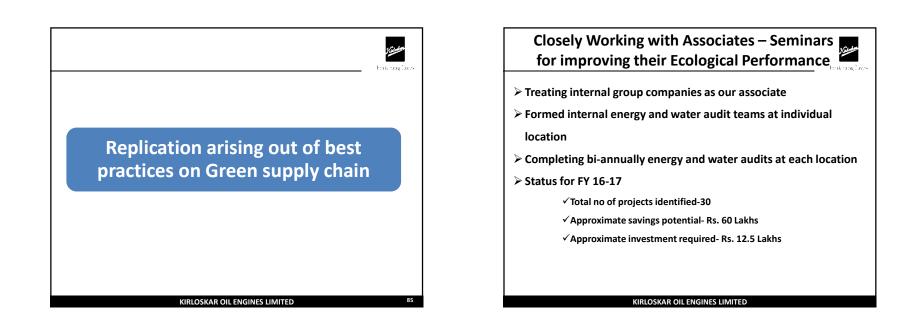












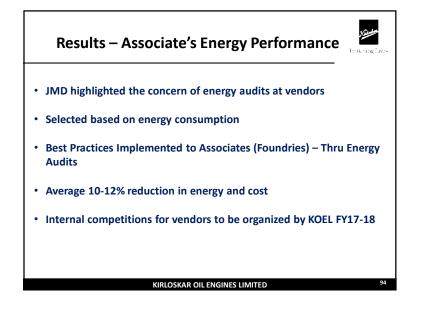
Government rebates												
Gove	rnment incer	ntives and O	ther cost redu Saving	iction initiativ	ves Saving							
Parameter	иом		Saving	Javnig								
		FY 14-15	FY 15-16	FY 16-17	FY 2017-18 Till July'17							
PF Rebate	Rs Lakhs	78.58	74.15	61.04	14.62							
Prompt Payment discount	Rs Lakhs	11.41	10.23	8.02	1.94							
Kagal OA Benefit	Rs Lakhs	1.64	18.44	50.47	22.97							

for improving their Energy Performance											
Sr. No	Supplier Name	Audit Name	Conducted in year	Duration (Hr.)							
1	KMW Kagal	Energy Audit	2016-17	8 Hr.							
2	KOEL Nashik	Energy Audit	2016-17	8 Hr.							
3	Jadhav industries	Energy Audit	2016-17	8 Hr.							
4	Sound castings Pvt. Ltd.	Energy Audit	2015-16	8 Hr.							
5	Victor Enterprises	Energy Audit	2015-16	8 Hr.							
6	Sanmati CNC Engg. Works	Energy Audit	2014-15	8 Hr.							
7	K & K Foundry	Energy Audit	2015-16	8 Hr.							
8	Shriram Foundry	Energy Audit	2014-15	8 Hr.							
9	Alpha Founders	Energy Audit	2014-15	8 Hr.							
10	Suyash Iron & Steels Pvt. Ltd	Energy Audit	2016-17	8 Hr.							

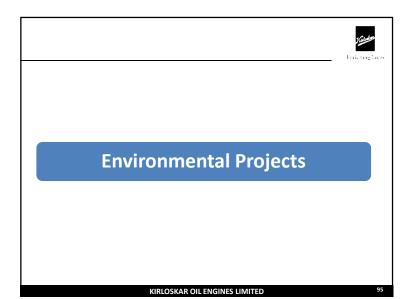
KIRLOSKAR OIL ENGINES LIMITED

Creating Awareness of Society on Different Environmental Aspects

Jane


michang laws

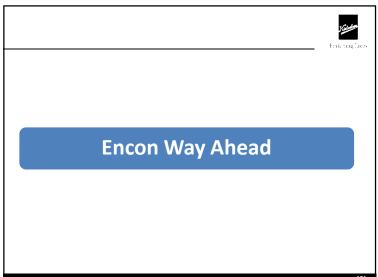
<u>Kirloskar Vasundhara Film Festival</u>


Program is conducted every year where presence of Kirloskar Plant. Every year, new Program Theme is decided & entire program based on the said Theme. <u>FY 17-18 - "Save River, Save Life"</u> <u>FY 16-17- "Smart and sustainable –It's my city"</u>

• Sustainability reporting

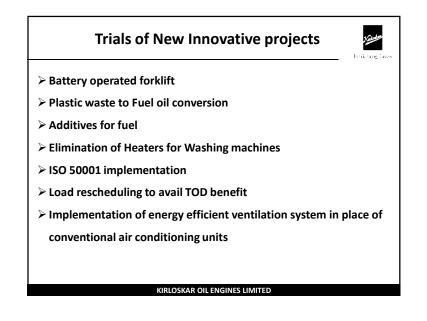
Sr. no.	Year	Frequency	Guiding Principles	Status
1	Sustainability Report 2009-10	Annually	GRI G3	Published
2	Sustainability Report 2010-11	Annually	GRI G3	Published
3	Sustainability Report 2011-12	Annually	GRI G3.1	Published
4	Sustainability Report 2012-14	Biannually	GRI G3.1	Published
5	Sustainability Report 2014-16	Biannually	GRI G4	Published
6	Sustainability Report 2016-17	Annually	GRI G4	Will be published by Sept. 17
	KIRLOSK	AR OIL ENGINES	LIMITED	93

Sr. No.	Analysis report of Treated Effluent	Actual values						
			Limits	FY 14-15 FY 15-16		FY 16-17	FY 17-18 Till July-1	
1	РН	-	5.5-9.0	7.60	7.43	7.09	7.3	
2	Suspended Solids	mg/lit	100	15.49	27.17	16.08	16.8	
3	Chlorides	mg/lit	600	182.35	214.17	134.47	171.0	
4	Sulphates	mg/lit	1000	17.48	14.30	26.49	19.3	
5	TDS	mg/lit	2100	776.25	685.33	721.67	707.0	
6	BOD	mg/lit	100	13.71	16.61	10.8		
7	COD	mg/lit	250	64.72	70.67	57.19		
8	Oil & Grease	mg/lit	10	<5	<5	<5		



KIRLOSKAR OIL ENGINES LIMITED

ISO	0001:2015	ISO 14001:2015 OHSAS 18001 :2007					
Clause Number	Numbers of Observations	Clause Number	Numbers of Observation				
5.3	1	4.3.1	2				
6.1	2	4.4.2	1				
6.1.1	3	4.4.6	3				
7.1.4	1	6.1.2	3				
7.2	2	7.2	1				
7.4	1	8.1	3				
7.5	2						
7.5.3	3						
7.6	1						
8.1	3						
8.5.2	1						
9.1.1	3						
9.2.2	1						
9.3.3	1						
C's & OFI's are re	C's related to any Env lated to Documentati em which we have add	ons improvement	•. •				



Junio Innio mag Luces		Ene	rgy	Foi	reca	asti	ng F	FY 1	.7-1	18			بر Herior	ang lave
		Energy forcasting FY 201718 Kagal 1 Plant												
	ITEM	Apr 16	May 16	Jun 16	Jul 16	Aug 16	Sep 16	Oct 16	Nov 16	Dec 16	Jan 17	Feb 17	Mar 17	Total
	Genset BHP	58,785.50	61,282.00	51,077.50	59,137.50	62,316.00	67,433.50	55,227.00	71,046.50	66,442.50	71,767.00	62,602.50	116,987.00	804105
	Specific Electricity Consumption													
	kWh/BHP	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	
	Genset Kwh	152842	159333	132802	153758	162022	175327	143590	184721	172751	186594	162767	304166	2090672
	Medium Engines BHP	274,645.00	279, 328.50	258,570.50	278, 275.00	275, 342.00	290,851.00	278,837.50	308,804.00	305,624.50	348,270.00	335,188.50	390,204.00	3623941
	Specific Electricity Consumption													
	kWh/BHP	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	3.19	
	Medium Engines Kwh	876118	891058	824840	887697	878341	927815	889492	985085	974942	1110981	1069251	1244751	11560370
	Small Engines BHP	10639	9844	7700	9537	12097	9704	9600	10983	9776	11177	14310	15561	130928
	Specific Electricity Consumption													
	kWh/BHP	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	
	Small Engines Kwh	60004	55520	43428	53789	68227	54731	54144	61944	55137	63038	80708	87764	738434
	EP II BHP	132,977.40	142,565.40	123,041.20	148,008.40	145,391.40	150,514.40	142,832.40	160,562.40	164,219.40	199,860.40	195,256.80	234,816.60	1940046
	Specific Electricity Consumption													
	kWh/BHP	1.99						1.99	1.99	1.99	1.99			
	EP 2 Kwh	264625	283705	244852	294537	289329	299524	284236	319519	326797	397722	388561	467285	3860692
	Fixed Energy kWh	129815	133962	108742	102150	102215	98798	95514	99184	94908	100313	106519	131006	
	Total kWh KP1	1483404	1523578		1491930	1500134	1556194	1466976	1650453	1624534	1858649	1807806	2234972	19553294
	Open ACESS UNITS (kWh)	552379	552379	552379	552379	552379	552379	552379	552379	552379	552379	552379	552379	6628553
	MSEDCL units (kWh)	931024	971199	802284	939551	947754	1003815	914597	1098074	1072154	1306270	1255427	1682593	12924740
	MSEDCL Unit Rate (Rs/Unit)	8.5	8.5			8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	
	Open Acess Unit rate	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
	Electricity AOP for KP1 in Rs.	12327798	12669148	11233933	12400243	12469945	12946272	12188219	13747159	13526933	15516131	15084137	18713623	162823543

KIRLOSKAR OIL ENGINES LIMITED

Sr	Title of project	Trial	Vendor selected	PO raised	Material received	Installed	Comple ted	
1	Installation of Air ventilation system at the place of conventional AC							
2	Occupational sensors for offices							
3	Replacement of old inefficient motors of AHU with energy efficient motors							
4	Maximize share of renewable energy to 50% through OA							
5	Light pipes to maximize daylight usage							
6	Compressed air leak audit							
7	Replacement of PL streetlights with LED							
8	50 KWp Roof top building integrated PV plant							
9	2MWp Solar PV captive plant							

